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ABSTRACT 
This paper introduces an adaptive fuzzy-neural control (AFNC) utilizing sliding mode-based learning algorithm 

(SMBLA) for robot manipulator to track the desired trajectory. A traditional sliding mode controller is applied to 

ensure the asymptotic stability of the system, and the fuzzy rule-based wavelet neural networks (FWNNs) are 

employed as the feedback controllers. Additionally, a novel adaptation of the FWNNs parameters is derived 

from the SMBLA in the Lyapunov stability theorem. Hence, the AFNC approximates parameter variation, 

unmodeled dynamics, and unknown disturbances without the detailed knowledge of robot manipulator, while 

resulting in an improved tracking performance. Lastly, in order to validate the effectiveness of the proposed 

approach, the comparative simulation results of two-degrees of freedom robot manipulator are presented. 

Keywords – traditional sliding mode control (TSMC), adaptive fuzzy neural control (AFNC), fuzzy rule-based 

wavelet neural network (FWNN), sliding mode-based learning algorithm (SMBLA), degrees of freedom robot 

manipulator (DOFRM) 

 

I. INTRODUCTION 
Generally, various uncertainties comprising 

parameter variation, unmodeled dynamics, and 

unknown disturbances influence the tracking 

performances of robot manipulator [1, 2]. In the 

designing of reference model based control system, 

it is difficult for determining a mathematical model 

correctly. Because the traditional controllers (i.e., 

robust controller [3], sliding mode controller [4]) are 

time-invariant controllers, this term causes 

nonlinearities and discontinuities which renders 

traditional control invalid. So the requirement of the 

intelligent control approaches (ICAs) is that 

reducing the impact of the various uncertainties in 

the design process. During the last decades, the ICAs 

(i.e., neural network control (NNC) [5], and fuzzy 

logic control (FLC) [6]) have been largely applied 

for controlling the motion of robot manipulators [7, 

8]. The topical trend of researches is that integrating 

the traditional control methods with the ICAs for the 

improvement in the performance of system [9-11]. 

Besides, based on the combination of the rule 

reasoning of fuzzy systems and the learning 

capability of neural networks without the prior 

knowledge, the fuzzy-neural network control 

(FNNC) methods are also designed to provide higher 

robustness than both NNC and FLC [12-14]. 

 

 

 

In the training of artificial neural networks 

(ANNs) and fuzzy-neural networks (FNNs), 

different learning algorithms containing gradient  

descent-based algorithm (GDBA) [15] and 

evolutionary computation-based algorithm (ECBA) 

[16, 17] have been utilized. However, the 

convergence rate of GDBA is sluggish due to the 

involvement of partial derivatives, specifically when 

the solution space is complicated. For the ECBA, the 

stability and optimal values are difficultly reached 

by using stochastic operators, and the high 

calculation is still a burden. It is well-known that 

sliding mode control (SMC) is a method which can 

ensure the stability and robustness in both the case 

of uncertainties and computationally intelligent 

systems [18]. By using the SMC strategy in the 

online learning for ANNs and FNNs, sliding mode-

based learning algorithm (SMBLA) can guarantee 

better convergence and more robust than 

conventional learning approaches [19, 20]. It is 

different from GDBA in feedback-error learning 

[21], the network parameters are updated by 

SMBLA in the way that the learning error is 

enforcedly satisfied a stable equation. 

In this paper, an adaptive fuzzy-neural 

control (AFNC) using SMBLA is proposed for 

tracking desired trajectory of robot manipulator. In 

the proposed control method, the traditional sliding 

mode controller (TSMC) is applied for guaranteeing 

the asymptotic stability of the control system, and 

the fuzzy rule-based wavelet neural networks 
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(FWNNs) are employed as feedback controllers to 

approximate the uncertainties. Moreover, a novel 

SMBLA strategy is suggested to train the FWNNs 

using wavelet basis membership function (WBMF) 

[22]. By using Lyapunov theorem to prove the 

stability of the SMBLA, the fast convergence ability 

of the FWNNs parameters is ensured, and an 

adaptive updating law is achieved. Hence, the 

proposed method approximates the uncertainties 

without the detailed knowledge of robot 

manipulator, while resulting in an improved 

performance. Last of all, the comparative simulation 

results of two-degrees of freedom (DOF) robot 

manipulator are presented for validating the 

effectiveness of the proposed AFNC system. 

The remainder of the paper is organized as 

follows: section 2 represents the preliminaries. In 

section 3, the AFNC scheme and the SMBLA are 

presented. Section 4 provides the comparative 

simulation results of two-DOF robot manipulator. 

Finally, the conclusion is shown in section 5. 

 

II. PRELIMINARIES 
1. Dynamic Model of Robot Manipulator 

Consider an 𝑛-DOF robot manipulator, the 

dynamics can be represented in Lagrange formation 

[23]: 

𝑴𝑟 𝜽 𝜽 + 𝑽𝑟 𝜽, 𝜽  𝜽 + 𝒈𝑟 𝜽 + 𝜼𝑒 = 𝒖𝜏  (1) 

where 𝑴𝑟(𝜽) ∈ 𝑅𝑛×𝑛  is the inertial matrix, 

𝑽𝑟(𝜽, 𝜽 ) ∈ 𝑅𝑛×𝑛  is the Coriolis-centripetal matrix, 

𝒈𝑟(𝜽) ∈ 𝑅𝑛  is the gravity vector, 𝜼𝑒 ∈ 𝑅𝑛  is the 

vector of unknown disturbances, 𝒖𝜏 ∈ 𝑅𝑛  is the 

vector of control torques, and 𝜽 𝑡 ∈ 𝑅𝑛 , 𝜽  𝑡 , and 

𝜽 (𝑡) are the vectors of joint positions, corresponding 

velocities, and corresponding accelerations, 

respectively. 

 

2. FWNN Structure and Fuzzy If-Then Rule 
The structure of a five-layer FWNN, as 

depicted in Figure 1, contains two input neurons, 
 𝑝 + 𝑞  membership neurons,  𝑝 × 𝑞  rule neurons, 

 𝑝 × 𝑞  normalization neurons, and one output 

neuron. 

 

Figure 1: Structure of FWNN 

Consider a zeroth-order Takagi-Sugeno-

Kang model containing two input variables, the 

fuzzy If-Then rules is described as follows: 
𝑟𝑖𝑗 : 𝐼𝑓 𝑦1  𝑖𝑠 𝐴𝑖  𝑎𝑛𝑑 𝑦2  𝑖𝑠 𝐵𝑗 , 𝑇𝑒𝑛 𝜑𝑖𝑗 = 𝑑𝑖𝑗   (2) 

where 𝑦1 and 𝑦2 are the input variables of FWNN, 

𝜑𝑖𝑗  is a zeroth-order function in the consequent 

element of the rule 𝑟𝑖𝑗 , and 𝐴𝑖  and 𝐵𝑗  denote the 

fuzzy sets of 𝑦1 and 𝑦2, respectively. 

 

Input Layer (Layer 1): Given a input vector of two 

crisp variables 𝒚 = [𝑦1 , 𝑦2]𝑇 ∈ 𝑅2, their values are 

transmitted to the next layer by the neurons in this 

layer. 

 

Membership Layer (Layer 2): By using WBMF, 

the membership neurons map 𝑦1 and 𝑦2 into 

fuzzified values. These membership neurons have 

the WBMFs represented by: 

 
𝜇𝐴𝑖

 𝑦1 =  1 −  𝛿𝐴𝑖
 𝑦1 − 𝛼𝐴𝑖

  
2
 𝑒− 𝛿𝐴𝑖

 𝑦1−𝛼𝐴𝑖
  

2

𝜇𝐵𝑗
 𝑦2 =  1 −  𝛿𝐵𝑗

 𝑦2 − 𝛼𝐵𝑗
  

2

 𝑒
− 𝛿𝐵𝑗

 𝑦2−𝛼𝐵𝑗
  

2
  

(3) 

where 𝜇𝐴𝑖
 𝑦1  and 𝜇𝐵𝑗

 𝑦2  are the membership 

values, 𝛼𝐴𝑖
 and 𝛼𝐵𝑗

 are the translation parameters, 

and 𝛿𝐴𝑖
 and 𝛿𝐵𝑗

 are the dilation parameters of 

WBMF for input variables 𝑦1 and 𝑦2, respectively. 

𝑖 = 1,2, … ,𝑝 and 𝑗 = 1,2, … , 𝑞. 

 

Rule Layer (Layer 3): The output of each rule 

neuron expresses a firing strength 𝑤𝑖𝑗  of 

corresponding rule, and it is calculated by 

multiplying two incoming signals: 

𝑤𝑖𝑗 = 𝜇𝐴𝑖
 𝑦1 𝜇𝐵𝑗

 𝑦2   (4) 

 

Normalization Layer (Layer 4): In this layer, the 

normalization of all of the firing strengths is 

performed. Then, the normalized value of every 

neuron can be denoted as: 

𝑤 𝑖𝑗 =
𝑤𝑖𝑗

  𝑤𝑖𝑗
𝑞
𝑗=1

𝑝
𝑖=1

   (5) 

 

Output Layer (Layer 5): The defuzzification is 

performed in this layer. The output linguistic 

variable is computed according to the weighted sum 

technique of all incoming signals: 

𝑧 =    𝑤 𝑖𝑗𝜑𝑖𝑗  
𝑞
𝑗=1

𝑝
𝑖=1 =

   𝑤𝑖𝑗 𝑑𝑖𝑗  
𝑞
𝑗=1

𝑝
𝑖=1

  𝑤𝑖𝑗
𝑞
𝑗=1

𝑝
𝑖=1

 (6) 

 

III. DESIGN OF AFNC USING SMBLA 
 

1. AFNC Scheme 
An AFNC scheme, as illustrated in Figure 

2, presents a combination of the sliding mode 

controller in parallel with the FWNNs. 
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Figure 2:  Structure of AFNC system 

 

The first, the sliding mode controller is 

designed for ensuring the asymptotic stability of the 

control system. A sliding surface 𝜷휀  is specified by: 

𝜷휀 𝜺, 𝜺  = 𝜺 + 𝜦𝛽𝜺 = 𝜽 𝑑 − 𝜽 + 𝜦𝛽 𝜽𝑑 − 𝜽 =

 𝛽휀
1 , … 𝛽휀

𝑘 , … 𝛽휀
𝑛 𝑇    (7) 

where 𝜦𝛽  is a diagonal and positive definite constant 

matrix defining the sliding surface slope, 𝑘 =
1,2, …𝑛, and the vectors of desired positions, desired 

velocities, feedback position errors, and feedback 

velocity errors are denoted by 

𝜽𝑑 =  𝜃𝑑
1 , … 𝜃𝑑

𝑘 , … 𝜃𝑑
𝑛 𝑇 , 

𝜽 𝑑 =  𝜃 𝑑
1, … 𝜃 𝑑

𝑘 , … 𝜃 𝑑
𝑛 𝑇 , 

𝜺 =  휀1, … 휀𝑘 , … 휀𝑛 𝑇 , and 

𝜺 =  휀 1, … 휀 𝑘 , … 휀 𝑛 𝑇 , respectively. Then, the 

sliding control law is defined as follows: 

𝒖𝑆 =  𝑢𝑆
1 ,… 𝑢𝑆

𝑘 , … 𝑢𝑆
𝑛 𝑇 = 𝜦𝑆𝜷휀 =

 
𝜆𝑆

1 … 0
⋮ ⋱ ⋮
0 … 𝜆𝑆

𝑛
  𝛽휀

1 , … 𝛽휀
𝑘 , … 𝛽휀

𝑛  𝑇  (8) 

where 𝜦𝑆  is a diagonal and positive definite gain 

matrix, with 𝜆𝑆
𝑘 > 0. 

The second, the FWNNs are used as the 

feedback controllers to approximate the uncertainties 

in the system. For the 𝑘𝑡  FWNN, the two inputs 𝑦1
𝑘  

and 𝑦2
𝑘  are considered as 휀𝑘  and 휀 𝑘 , and the output 

𝑧𝑘  is applied as the output of 𝑘𝑡  feedback 

controller. Then, the output vector of feedback 

controllers is obtained as 

𝒖𝐹 =  𝑢𝐹
1 , … 𝑢𝐹

𝑘 , … 𝑢𝐹
𝑛 𝑇 , where 𝑢𝐹

𝑘 = 𝑧𝑘 =
   𝑤 𝑖𝑗

𝑘𝑑𝑖𝑗
𝑘  

𝑞
𝑗=1

𝑝
𝑖=1 . 

Thus, the control input vector of the joint 

torques, 𝒖𝜏 , is determined by: 

𝒖𝜏 = 𝒖𝑆 − 𝒖𝐹 =  𝑢𝜏
1 , … 𝑢𝜏

𝑘 , … 𝑢𝜏
𝑛 𝑇  (9) 

 

2. Sliding Mode-Based Learning Algorithm 
Assumption 1: Consider that all of the input signals 

(i.e., 𝑦1
𝑘  and 𝑦2

𝑘 ) and their time derivatives (i.e., 𝑦 1
𝑘  

and 𝑦 2
𝑘) are bounded by: 

 
 𝑦1

𝑘 𝑡  ≤ 𝑏𝑦 ;  𝑦 1 𝑡  ≤ 𝑏𝑦 ; ∀𝑡

 𝑦2
𝑘 𝑡  ≤ 𝑏𝑦 ;  𝑦 2 𝑡  ≤ 𝑏𝑦 ; ∀𝑡

  (10) 

with 𝑏𝑦  and 𝑏𝑦  are known positive constants. 

Assumption 2: Suppose that all of the control input 

torques and their time derivatives are bounded by: 

 𝑢𝜏
𝑘 𝑡  ≤ 𝑏𝑢 ;  𝑢 𝜏

𝑘 𝑡  ≤ 𝑏𝑢 ; ∀𝑡  (11) 

with 𝑏𝑢  and 𝑏𝑢  are known positive constants. 

Definition 1: By utilizing the SMC theory in [24], 

𝒖𝑆 can be defined as a time-varying sliding surface: 

𝜷𝑢 𝒖𝜏 , 𝒖𝐹 = 𝒖𝑆 𝑡 = 𝒖𝐹 𝑡 + 𝒖𝜏 𝑡 = 0 (12) 

Definition 2: A sliding motion sustains on (12) after 

finite time 𝑡𝑢 , if the satisfaction of the inequality 

 𝜷𝑢 𝑡  
𝑇𝜷 𝑢 𝑡 < 0 is achieved for all time 𝑡 in 

some non-trivial semi-open sub-interval of a form as 
 𝑡, 𝑡𝑢 ⊂ (−∞, 𝑡𝑢). 

Theorem 1: Based on the above Assumptions and 

Definitions, given an initial value 𝒖𝑆 0 , the 

convergence of the learning error 𝒖𝑆 𝑡  to zero 

within 𝑡𝑢  can be guaranteed, if the adaptive learning 

laws for the parameters of FWNNs are designed as: 

 
 
 
 
 
 

 
 
 
 
 

𝛼 𝐴𝑖

𝑘 = 𝑦 1
𝑘 + 𝑐𝐴𝑖

𝑘 𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘 

𝛼 𝐵𝑗

𝑘 = 𝑦 2
𝑘 + 𝑐𝐵𝑗

𝑘 𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘 

𝛿 𝐴𝑖

𝑘 =  𝛿𝐴𝑖

𝑘 +
𝐴𝑖
𝑘

𝛿𝐴𝑖
𝑘  𝑐𝐴𝑖

𝑘  
2 𝜗𝑠𝑔𝑛 𝑢𝑆

𝑘 

𝛿 𝐵𝑗

𝑘 =  𝛿𝐵𝑗

𝑘 +
𝐵𝑗
𝑘

𝛿𝐵𝑗
𝑘  𝑐𝐵𝑗

𝑘  
2 𝜗𝑠𝑔𝑛 𝑢𝑆

𝑘 

𝜑 𝑖𝑗
𝑘 = −

𝑤 𝑖𝑗
𝑘

 𝒘 𝑘  
𝑇
𝒘 𝑘

𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘 

  (13) 

where 𝑐𝐴𝑖

𝑘 = 𝑦1
𝑘 − 𝛼𝐴𝑖

𝑘 , 𝑐𝐵𝑗

𝑘 = 𝑦2
𝑘 − 𝛼𝐵𝑗

𝑘 , 𝐴𝑖

𝑘 =

 1 −  𝛿𝐴𝑖

𝑘 𝑐𝐴𝑖

𝑘  
2
  2 −  𝛿𝐴𝑖

𝑘 𝑐𝐴𝑖

𝑘  
2
  , 𝐵𝑗

𝑘 =

 1 −  𝛿𝐵𝑗

𝑘 𝑐𝐵𝑗

𝑘  
2

  2 −  𝛿𝐵𝑗

𝑘 𝑐𝐵𝑗

𝑘  
2

  , 𝒘 𝑘 =

 𝑤 11
𝑘 , … 𝑤 𝑖𝑗

𝑘 , … 𝑤 𝑝𝑞
𝑘  

𝑇
, 𝑠𝑔𝑛  .   is the sign 

function, and the learning speed 𝜗 is a sufficiently 

large positive constant which is designed for 

satisfying the condition 𝑏𝑢 < 𝜗. 

Proof of Theorem 1: 

From (3), the time derivatives of the 

membership functions in the 𝑘𝑡  FWNN are written 

as follows: 

 
 
 

 
 𝜇 𝐴𝑖

𝑘  𝑦1
𝑘 = −2

𝜎𝐴𝑖
𝑘 𝜎 𝐴𝑖

𝑘

𝐴𝑖
𝑘 𝜇𝐴𝑖

𝑘  𝑦1
𝑘 

𝜇 𝐵𝑗

𝑘  𝑦2
𝑘 = −2

𝜎𝐵𝑗
𝑘 𝜎 𝐵𝑗

𝑘

𝐵𝑗
𝑘 𝜇𝐵𝑗

𝑘  𝑦2
𝑘 

   (14) 

where: 

 
𝜎𝐴𝑖

𝑘 = 𝛿𝐴𝑖

𝑘 𝑐𝐴𝑖

𝑘 = 𝛿𝐴𝑖

𝑘  𝑦1
𝑘 − 𝛼𝐴𝑖

𝑘  

𝜎𝐵𝑗

𝑘 = 𝛿𝐵𝑗

𝑘 𝑐𝐵𝑗

𝑘 = 𝛿𝐵𝑗

𝑘  𝑦2
𝑘 − 𝛼𝐵𝑗

𝑘  
   (15) 

By differentiating (15), yields: 

 
𝜎 𝐴𝑖

𝑘 = 𝛿 𝐴𝑖

𝑘  𝑦1
𝑘 − 𝛼𝐴𝑖

𝑘  + 𝛿𝐴𝑖

𝑘  𝑦 1
𝑘 − 𝛼 𝐴𝑖

𝑘  

𝜎 𝐵𝑗

𝑘 = 𝛿 𝐵𝑗

𝑘  𝑦2
𝑘 − 𝛼𝐵𝑗

𝑘  + 𝛿𝐵𝑗

𝑘  𝑦 2
𝑘 − 𝛼 𝐵𝑗

𝑘  
  (16) 

The time derivative of 𝑤𝑖𝑗
𝑘  is expressed as: 

𝑤 𝑖𝑗
𝑘 = 𝜇 𝐴𝑖

𝑘 𝜇𝐵𝑗

𝑘 + 𝜇 𝐵𝑗

𝑘 𝜇𝐴𝑖

𝑘 = −𝑠 𝑖𝑗
𝑘 𝑤𝑖𝑗

𝑘  (17) 

where: 
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𝑠 𝑖𝑗
𝑘 = 2  

𝜎𝐴𝑖
𝑘 𝜎 𝐴𝑖

𝑘

𝐴𝑖
𝑘 +

𝜎𝐵𝑗
𝑘 𝜎 𝐵𝑗

𝑘

𝐵𝑗
𝑘    (18) 

According to (17) and (18), 𝑤  𝑖𝑗
𝑘  is determined as 

𝑤  𝑖𝑗
𝑘 = −𝑤 𝑖𝑗

𝑘 𝑠 𝑖𝑗
𝑘 + 𝑤 𝑖𝑗

𝑘    𝑤 𝑖𝑗
𝑘 𝑠 𝑖𝑗

𝑘  
𝑞
𝑗=1

𝑝
𝑖=1  (19) 

From (13), (15) and (16), it can be obtained that 

 
 
 

 
 

𝜎𝐴𝑖
𝑘 𝜎 𝐴𝑖

𝑘

𝐴𝑖
𝑘 =

𝜎𝐴𝑖
𝑘

𝐴𝑖
𝑘  𝛿 𝐴𝑖

𝑘 𝑐𝐴𝑖

𝑘 + 𝛿𝐴𝑖

𝑘  𝑦 1
𝑘 − 𝛼 𝐴𝑖

𝑘   = 𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘 

𝜎𝐵𝑗
𝑘 𝜎 𝐵𝑗

𝑘

𝐵𝑗
𝑘 =

𝜎𝐵𝑗
𝑘

𝐵𝑗
𝑘  𝛿 𝐵𝑗

𝑘 𝑐𝐵𝑗

𝑘 + 𝛿𝐵𝑗

𝑘  𝑦 2
𝑘 − 𝛼 𝐵𝑗

𝑘   = 𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘 

 

 (20) 

Take a Lyapunov function as follows: 

ℒ1 𝑡 =
1

2
 𝜷𝑢 𝑡  

𝑇𝜷𝑢 𝑡 =
1

2
 𝒖𝑆 

𝑇𝒖𝑆 =
1

2
  𝑢𝑆

𝑘 2𝑛
𝑘=1   (21) 

By differentiating (21) with respect to time 

yields: 

ℒ 1 𝑡 =  𝜷𝑢 𝑡  
𝑇𝜷 𝑢 𝑡 =   𝑢 𝑆

𝑘𝑢𝑆
𝑘 𝑛

𝑘=1 =
   𝑢 𝐹

𝑘 + 𝑢 𝜏
𝑘 𝑢𝑆

𝑘 𝑛
𝑘=1  (22) 

By using (13), (18), (19), and (20), 𝑢 𝐹
𝑘  is 

obtained as follows: 

𝑢 𝐹
𝑘 =    𝑤 𝑖𝑗

𝑘𝜑 𝑖𝑗
𝑘 + 𝑤  𝑖𝑗

𝑘𝜑𝑖𝑗
𝑘  

𝑞
𝑗=1

𝑝
𝑖=1 =

   −𝑤 𝑖𝑗
𝑘 𝑤 𝑖𝑗

𝑘

 𝒘 𝑘  
𝑇
𝒘 𝑘

𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘 +

𝑞
𝑗=1

𝑝
𝑖=1

 −2𝑤 𝑖𝑗
𝑘  

𝜎𝐴𝑖
𝑘 𝜎 𝐴𝑖

𝑘

𝐴𝑖
𝑘 +

𝜎𝐵𝑗
𝑘 𝜎 𝐵𝑗

𝑘

𝐵𝑗
𝑘  +

𝑤 𝑖𝑗
𝑘    2𝑤 𝑖𝑗

𝑘  
𝜎𝐴𝑖
𝑘 𝜎 𝐴𝑖

𝑘

𝐴𝑖
𝑘 +

𝜎𝐵𝑗
𝑘 𝜎 𝐵𝑗

𝑘

𝐵𝑗
𝑘   

𝑞
𝑗=1

𝑝
𝑖=1  𝜑𝑖𝑗

𝑘  =

   −𝑤 𝑖𝑗
𝑘 𝑤 𝑖𝑗

𝑘

 𝒘 𝑘  
𝑇
𝒘 𝑘

𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘 +

𝑞
𝑗=1

𝑝
𝑖=1

 −4𝑤 𝑖𝑗
𝑘𝜗𝑠𝑔𝑛 𝑢𝑆

𝑘 +

𝑤 𝑖𝑗
𝑘    4𝑤 𝑖𝑗

𝑘𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘  

𝑞
𝑗=1

𝑝
𝑖=1  𝜑𝑖𝑗

𝑘  =

𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘    −𝑤 𝑖𝑗

𝑘 𝑤 𝑖𝑗
𝑘

 𝒘 𝑘  
𝑇
𝒘 𝑘

+  −4𝑤 𝑖𝑗
𝑘 +

𝑞
𝑗=1

𝑝
𝑖=1

4𝑤 𝑖𝑗
𝑘    𝑤 𝑖𝑗

𝑘  
𝑞
𝑗=1

𝑝
𝑖=1  𝜑𝑖𝑗

𝑘  =

𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘    −𝑤 𝑖𝑗

𝑘 𝑤 𝑖𝑗
𝑘

 𝒘 𝑘  
𝑇
𝒘 𝑘

 
𝑞
𝑗=1

𝑝
𝑖=1 = −𝜗𝑠𝑔𝑛 𝑢𝑆

𝑘  

(23) 

Based on (23), the Assumptions and the 

condition 𝑏𝑢 < 𝜗, it is concluded that ℒ  𝑡  must be 

lower than zero for satisfying the stability of the 

learning: 

ℒ 1 𝑡 =    −𝜗𝑠𝑔𝑛 𝑢𝑆
𝑘 + 𝑢 𝜏

𝑘 𝑢𝑆
𝑘 𝑛

𝑘=1 ≤
  −𝜗 𝑢𝑆

𝑘  +  𝑢 𝜏
𝑘   𝑢𝑆

𝑘   𝑛
𝑘=1 ≤

  −𝜗 𝑢𝑆
𝑘  + 𝑏𝑢  𝑢𝑆

𝑘   𝑛
𝑘=1 < 0, ∀𝑢𝑆

𝑘 ≠ 0 (24) 

This completes the proof. 

Assumption 3: Assume that the desired position 

vector 𝜽𝑑 𝑡  is uniformly continuous and 

differentiable, and the vectors 𝜽𝑑 𝑡 , 𝜽 𝑑 𝑡  and 

𝜽 𝑑 𝑡  are bounded. 

Theorem 2: Consider a dynamics system as (1), 

under all of Assumptions and Definitions, if an 

AFNC law is defined as (9), and an online 

adaptation strategy for the parameters of FWNNs is 

designed as (13), then the convergence of tracking 

errors and the stability of proposed control system 

can be ensured. 

Proof of Theorem 2: 

By using (8) and (12), a relation between 𝜷휀  and 

𝜷𝑢  is presented as follows: 

𝜷휀 =  𝜦𝑆 
−1𝜷𝑢 =  𝜦𝑆 

−1𝒖𝑆 =

 
 
 
 

1

𝜆𝑆
1 … 0

⋮ ⋱ ⋮

0 …
1

𝜆𝑆
𝑛  
 
 
 
 𝑢𝑆

1, … 𝑢𝑆
𝑘 , … 𝑢𝑆

𝑛  𝑇  (25) 

For analyzing the tracking performance of the 

control system, a Lyapunov function is considered as 

follows: 

ℒ2 𝑡 =
1

2
 𝜷휀 𝑡  

𝑇𝜷휀 𝑡   (26) 

Based on (25) and Theorem 1, the negative-

definiteness of the time derivative of ℒ2 𝑡  can be 

guaranteed: 

ℒ 2 𝑡 =  𝜷휀 𝑡  
𝑇𝜷 휀 𝑡 =   

1

 𝜆𝑆
𝑘 

2 𝑢 𝑆
𝑘𝑢𝑆

𝑘 𝑛
𝑘=1 ≤

  
1

 𝜆𝑆
𝑘 

2  −𝜗 𝑢𝑆
𝑘  + 𝑏𝑢  𝑢𝑆

𝑘    𝑛
𝑘=1 < 0, ∀𝑢𝑆

𝑘 ≠ 0 

(27) 

This completes the proof. 

 

IV. COMPARATIVE SIMULATION 

RESULTS 
Consider a two-DOF robot manipulator 

with the dynamics parameters as follows: 

𝑴𝑟 𝜽 =  
𝑙1

2𝑚1 +  𝑙1
2 + 𝑙2

2 𝑚2 + 𝜉𝑚 , 𝑙2
2𝑚2 + 𝜉𝑚

𝑙2
2𝑚2 + 𝜉𝑚 , 𝑙2

2𝑚2

  

(28) 

𝑽𝑟 𝜽, 𝜽  =

 
−𝑙1𝑙2𝑚2𝜃 2𝑠𝑖𝑛 𝜃2 , −𝑙1𝑙2𝑚2 𝜃 1 + 𝜃 2 𝑠𝑖𝑛 𝜃2 

𝑙1𝑙2𝑚2𝜃 1𝑠𝑖𝑛 𝜃2 , 0
  

(29) 

𝒈𝑟 𝜽 =

9.81  
𝑙1 𝑚1 + 𝑚2 𝑐𝑜𝑠 𝜃2 + 𝑙2𝑚2𝑐𝑜𝑠 𝜃1 + 𝜃2 

𝑙2𝑚2𝑐𝑜𝑠 𝜃1 + 𝜃2 
  

(30) 

where 𝜉𝑚 = 2𝑙1𝑙2𝑚2𝑐𝑜𝑠 𝜃2 . 

In order to demonstrate the robustness and 

the superior control performance of the proposed 

AFNC, both the AFNC system and the proportional 

differential control (PDC) system [2] are simulated 

for comparison. 

The PDC system is illustrated in Figure 3, 

and the PDC law is defined as 

𝒖𝑝𝑑 = 𝑲𝑝𝜺 + 𝑲𝑑𝜺   (31) 

where the gain matrices 𝑲𝑝  and 𝑲𝑑  are derived from 

the tuning rules of Ziegler Nichols [25] by a 

compromise between the control performance and 

the stability: 
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𝑲𝑝 =  
1100 0

0 600
 ;  𝑲𝑑 =  

45 0
0 30

  (32) 

 
Figure 3: Structure of PDC system 

 

In the AFNC system, all values of 𝛿𝐴𝑖

𝑘 , 𝛼𝐴𝑖

𝑘 , 

𝛿𝐵𝑗

𝑘 , and 𝛼𝐵𝑗

𝑘  are randomly initialised in the range of 

 −0.1, 0.1 , and other detailed parameters are 

given as follows: 

  𝑝 =  𝑞 = 5;  𝜗 = 0.01; 𝜦𝛽 =  
5 0
0 5

 ;  𝜦𝑆 =

 
60 0
0 60

  (33) 

The nominal parameters of the robot system 

are given as in Tables 1. 

 

Table 1: The nominal parameters of the 

robot system 
DOF DOF 1 DOF 2 

Mass (kg) 𝑚1 = 3 𝑚2 = 1.5 

Length (m) 𝑙1 = 0.5 𝑙2 = 0.9 

Initial position (rad) 𝜃1 0 = 0.8 𝜃2 0 = 0.8 

Initial velocity (rad/s) 𝜃 1 0 = 0 𝜃 2 0 = 0 

Desired trajectory 

(rad) 

𝜃𝑑1
 𝑡 = 𝑒−𝑡  𝜃𝑑2

 𝑡 = 𝑒−2𝑡 

 

Herein, the simulation is implemented in 

two cases as follows: 

 

Case 1: Have no the parameter variation, and 

consider the external disturbances term as: 

𝜼𝑒 =  4𝑒−0.6𝑡 , 6𝑒−0.4𝑡 𝑇   (34) 

 

Case 2: 𝜼𝑒  as in (34), and the parameter variation 

(i.e., a tip load, 1 (kg), on DOF 2) is considered. 

Besides, the root mean square error (RMSE) 

method is utilized to record the individual 

performance of control systems: 

𝑅𝑀𝑆𝐸𝑘 =  
1

𝑇𝜔
  𝜃𝑑

𝑘(𝜔) − 𝜃𝑘(𝜔) 2𝑇𝜔
𝜔=1  (35) 

where 𝜃𝑑
𝑘(𝜔) is the 𝜔𝑡  element of 𝜃𝑑

𝑘 , 𝜃𝑘(𝜔) is the 

𝜔𝑡  element of 𝜃𝑘 , 𝑇𝜔  is the total sampling instants, 

and 𝑘 = 1, 2. 

The simulation results of the PDC system 

and the AFNC system in two cases, which comprise 

joint position, tracking error, and control torque, are 

depicted in Figures 4-7, respectively. Moreover, the 

values of RMSEs in both the PDC system and the 

AFNC system are expressed in Table 2. 

 
Figure 4:  The simulation of PDC in Case 1 

 

 
Figure 5:  The simulation of PDC in Case 2 

 

 
Figure 6:  The simulation of AFNC in Case 1 

 

 
Figure 7:  The simulation of AFNC in Case 2 
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Table 2: RMSEs of PDC system and AFNC 

system in two cases 
RMSE

(rad) 

Case 1 Case 2 

PDC AFNC PDC AFNC 

𝑅𝑀𝑆𝐸1 0.0517 0.0279 0.0609 0.0298 

𝑅𝑀𝑆𝐸2 0.0478 0.0264 0.0578 0.0276 

 

From Figures 4 and 5, the tracking 

performances of the PDC system are good. 

However, the convergences of tracking errors are 

still slow. In Figures 6 and 7, the joint positions can 

closely track the desired trajectories under the 

existence of the uncertainties, and the tracking errors 

are regularly reduced because of the learning ability 

of FWNNs. 

The simulation results in Figures 4-7 and 

Table 2 show that the proposed AFNC system 

reaches the control performance improvement than 

that of the PDC system, while the convergence of 

tracking errors as well as the RMSEs of the 

proposed AFNC method is better than ones of the 

PDC method. 

 

V. CONCLUSION 
This paper has successfully applied an 

AFNC approach utilizing SMBLA for tracking the 

desired trajectory of robot manipulator. The AFNC 

scheme represents a parallel combination of FWNNs 

and TSMC, which not only approximates the various 

uncertainties but also guarantees the stability of the 

whole system. Additionally, the parameters of 

FWNNs are updated by a novel SMBLA that its 

convergence is proven by employing Lyapunov 

theorem. Hence, the proposed control system 

resulting in a robust and improved tracking 

performance without the detailed knowledge of 

robot manipulator. The comparative simulation 

results of two-DOF robot manipulator demonstrate 

that the tracking errors of the proposed AFNC 

method converge faster than ones of the PDC 

method. 
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